Nanoscale-resolved elasticity: contact mechanics for quantitative contact resonance atomic force microscopy.
نویسندگان
چکیده
Contact resonance atomic force microscopy (CR-AFM) constitutes a powerful approach for nanometer-resolved mechanical characterization of surfaces. Yet, absolute accuracy is frequently impaired by ad hoc assumptions on the dynamic AFM cantilever characteristics as well as contact model. Within the present study, we clarify the detailed interplay of stress fields and geometries for full quantitative understanding, employing combined experimental numerical studies for real AFM probes. Concerning contact description, a two-parameter ansatz is utilized that takes tip geometries and their corresponding indentation moduli into account. Parameter sets obtained upon experimental data fitting for different tip blunting states, are discussed in terms of model-specific artificiality versus real contact physics at the nanoscale. Unveiling the underlying physics in detail, these findings pave the way for accurate characterization of nanomechanical properties with highest resolution.
منابع مشابه
Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملScanning speed phenomenon in contact-resonance atomic force microscopy
This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded contact-resonance frequency is observed with increasing scan speed. Proper characterization and understanding of th...
متن کاملNanoscale mechanics by tomographic contact resonance atomic force microscopy.
We report on quantifiable depth-dependent contact resonance AFM (CR-AFM) measurements over polystyrene-polypropylene (PS-PP) blends to detail surface and sub-surface features in terms of elastic modulus and mechanical dissipation. The depth-dependences of the measured parameters were analyzed to generate cross-sectional images of tomographic reconstructions. Through a suitable normalization of ...
متن کاملEffective Parameters in Contact Mechanic for Micro/nano Particle Manipulation Based on Atomic Force Microscopy
The effect of geometry and material of the Micro/Nano particle on contact mechanic for manipulation was studied in this work based on atomic force microscopy. Hertz contact model simulation for EpH biological micro particle with spherical, cylindrical, and circular crowned roller shape was used to investigate the effect of geometry on contact simulation process in manipulation. Then, to val...
متن کاملMeasurement of Poisson’s ratio with contact- resonance atomic force microscopy
We describe contact-resonance atomic force microscopy ͑AFM͒ methods to quantitatively measure Poisson's ratio or shear modulus G at the same time as Young's modulus E. In contact-resonance AFM, the frequencies of the cantilever's resonant vibrations are measured while the tip is in contact with the sample. Simultaneous measurement of flexural and torsional vibrational modes enables E and to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2014